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Fish produce a wide variety of sounds that contribute to the soundscapes of
aquatic environments. In reef systems, these sounds are important acoustic
cues for various ecological processes. Artificial intelligence methods to
detect, classify and identify fish sounds have become increasingly common.
This study proposes the classification of unknown fish sounds recorded
in a subtropical rocky reef using different feature sets, data augmentation
and explainable artificial intelligence tools. We used different supervised
algorithms (naive Bayes, random forest, decision trees and multilayer
perceptron) to perform a multiclass classification of four classes of fish
pulsed sounds. The proposed models showed excellent performances,
achieving 98.1% of correct classification with multilayer perceptron using
data augmentation. Explainable artificial intelligence allowed us to identify
which features contributed to predict each sound class. Recognizing and
characterizing these sounds is key to better understanding diel behaviours
and functional roles associated with critical reef ecological processes.

This article is part of the theme issue ‘Acoustic monitoring for tropical
ecology and conservation’.

1. Introduction
Fish produce a wide variety of sounds, contributing to the soundscapes of
aquatic environments. Communication sounds are used in different behav-
ioural contexts, such as reproduction (courtship and mating), aggregation,
feeding and agonistic interactions [1,2]. Sounds produced by fish have
distinct spectral and temporal features, with many species producing pulsed
and repetitive sounds [3,4]. These features can enable species identification,
behavioural patterns and reproductive and spawning conditions [5]. In reef
systems, sounds are important acoustic cues for different ecological processes,
including larvae orientation and settlement and habitat use [6].

A common approach to study fish sounds is Passive Acoustic Monitor-
ing (PAM), which allows continuous and long-term assessment of sound-
scapes [7,8]. However, these long-term recordings are producing an increasing
amount of data, which makes manual analysis unfeasible and requires robust
computational methods [9]. Therefore, the use of artificial intelligence (AI)
to detect, classify and identify fish sounds is becoming increasingly common
[10]. Although machine learning and deep learning have gained attention in
this field in recent years, the interpretability of the models remains a gap.

One of the most challenging tasks concerning the classification problem
using learning-based approaches is to explain the predictions generated
by the models. The algorithms often operate like ‘black boxes’, and it is
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difficult to understand how the models achieve such performance, and which parameters were responsible for predicting
each class [11]. Explainable Artificial Intelligence (XAI) has received increasing attention in various fields such as medicine
[12], remote sensing [13], soundscape ecology [14] and many others. This is a method inspired in game theory that provides
explanations for machine learning models by computing the contribution of each feature to the prediction [11]. This technique
allows us to understand which features are important and how they specifically impact individual predictions of the model.
Therefore, XAI provides the interpretability of the models aligned to the specificities of the studied phenomenon/problem.

Feature selection is a fundamental step in sound classification using machine learning [15] as it helps to reduce dimen-
sionality and influence the accuracy of the model [16,17], and it must reflect the specificities of the problem domain. Thus,
understanding which features are more effective to represent fish sounds can significantly improve the detection, classification
and identification tasks. However, the study of feature selection is still in its early stages in the field of fish sounds, and
it is possible that currently underrated features could be good descriptors of these sounds. Timbral texture features (TTFs),
including the Mel Frequency Cepstral Coefficients (MFCCs), are widely used in music and human speech recognition. MFCCs
provide a robust representation of sound structures [18] and have also been used in recent studies to detect and classify fish
sounds [19–21]. However, few studies have demonstrated the individual contribution of each coefficient in predicting different
sounds.

In this paper, we classified unknown fish sounds from subtropical rocky reefs in Arraial do Cabo (23 ̊44'S−42̊W), Brazil. Four
supervised algorithms, naive Bayes (NB) [22], random forest (RF) [23], decision trees (DT) [24] and multilayer perceptron (MLP)
[25] were used to classify four classes of fish pulsed sounds. Different feature sets were used, where the contribution of features for
each class and the SHapley Additive exPlanations (SHAP) values were computed to understand the influence of the features on the
classifiers. To the best of our knowledge, this is one of the first studies to use XAI to explain the classification model and assess the
relationships between the features, allowing us to understand which features better describe each class of reef fish sounds.

2. Material and methods
(a) Data acquisition
We used acoustic  data  from the  long-term monitoring of  the  BIOCOM project  [26].  The study was conducted on the
island of  Cabo Frio,  Arraial  do Cabo (23 ̊44'S−42̊W),  Rio  de  Janeiro,  south-eastern Brazil.  The region is  characterized
by extensive  subtropical  rocky shores  influenced by seasonal  upwelling events,  which imparts  unique characteristics
of  a  clash between tropical  and warm-temperate  biodiversity  [27].  Local  upwelling brings  intermediate  deep waters
with  temperatures  below 18°  to  shallow habitats,  enriching trophic  webs  and promoting significant  local  hydrobiological
variability  [28,29].  The combination of  the  upwelling regime and the  diversity  of  reef  habitats  favours  a  rich  fish
community,  with  tropical  and subtropical  components  [30,31].

Acoustic  data  were  collected using a  recording system consisting of  a  stainless-steel  pyramid structure  with  a
4-channel  hydrophone (Hyd TP-1,  Marsensing Ltda)  deployed at  a  depth of  7.55  m and approximately  5  m from the
local  rocky shore.  The recorder  was  configured with  a  sampling frequency of  52 734  Hz,  24-bit  resolution and a  duty
cycle  of  20% (i.e.  a  1  min recording every 5  min).  The sensitivity  of  the  hydrophone was  −174.9  dB re  1  µPa,  with  a
flat  response  between 0.1  and 26 367  Hz.  (For  a  brief  description of  the  local  soundscape,  see  electronic  supplementary
material,  ‘Methods’.)  [26,32].

(b) Exploratory data analysis and preprocessing
To classify  fish  sounds,  we selected sound files  during different  seasons  of  the  year  from the  night,  dusk and dawn
periods,  as  these  are  known for  fish  acoustic  activity  [33–35].  We grouped the  sounds into  four  classes  (figure  1)  that
were  most  common in  the  dataset.  The classes  are  low-frequency sounds consisting of  sequences  of  pulses:  Class  1  is
a  pulse  train  with  3  to  9  pulses,  call  duration between 177  and 1387 ms,  irregular  inter-pulse  intervals  (IPIs)  and a
frequency range of  100−500 Hz;  Class  2  is  a  pulse  train  with  4  pulses,  call  duration between 157  and 347  ms,  almost
regular  IPIs  and a  frequency range of  100−600 Hz;  Class  3  is  a  pulse  train  with  4  to  13  pulses,  call  duration between
195 and 910  ms,  irregular  IPIs  and a  frequency range of  100−400 Hz;  and Class  4  is  a  pulse  train  with  3  to  7  pulses,
with  call  duration between 216  and 939  ms,  irregular  IPIs  and a  frequency range of  100−700 Hz.  (For  more  details
regarding the  sound classes  see  electronic  supplementary material,  ‘Methods’)  [36–42].

Prior  to  the  feature  extraction step,  the  signals  were  pre-processed.  Since  the  target  sounds were  of  low frequency,
filters  were  applied.  For  feature  set  1,  the  raw sound files  were  filtered using the  Raven Pro v.  1.6  [43]  bandpass  filter
tool  with  a  lower  limit  =  100  Hz and an upper  limit  =  1000  Hz.  For  feature  set  2,  we developed a  Python code to
detect  the  target  sounds according to  their  start  and end times,  previously  extracted in  feature  set  1.  In  this  step,  the
signals  were  downsampled (from 52 734  Hz to  5273 Hz)  and filtered by frequency using an elliptic  (Cauer)  bandpass
filter  from the  SciPy library.  The filter  was  configured with  a  maximum ripple  of  1  dB,  a  minimum attenuation of  20
dB and an optimal  filter  order,  based on frequency limits  for  each signal.
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(c) Feature extraction
With the  aim of  identifying an optimal  feature  set  to  classify  the  signals,  we proposed three  different  feature  sets,
totalling 40  features  from different  domains  (time,  frequency,  amplitude and cepstral  domain).  The first  set  has  a  total
of  nine  features,  consisting of  spectral  features  (high frequency,  low frequency,  peak frequency and centre  frequency),
temporal  features  (call  duration,  pulse  duration,  interpulse  interval  and number  of  pulses)  and energy.  To build  this
set,  we manually  extracted features  by inspecting both oscillograms and spectrograms using Raven Pro v.  1.6  (window
size  =  1768 fft,  overlap =  50%,  colour  scale  =  'Greyscale').  Energy and spectral  parameters  were  extracted directly  using
Raven functions,  while  temporal  parameters  were  extracted by using various  selections  in  the  signals  and extracting
'delta  time' [44].

To explore TTFs, we used the librosa Python package [45], which has specialized functions for this purpose. To do this,
we developed a code to detect fish signals (previously manually selected in the spectrograms). Leveraging librosa functions,
we also extracted tempo (beats) to obtain possible information about the underlying rhythm of these signals. For this set,
we selected 31 features (spectral centroid, spectral rolloff, zero crossing rate, spectral flux, tempo and 26 MFCCs) [46–48].
The novelty of this approach is to evaluate the contribution of the MFCCs by interpreting the coefficients that were more
important for each class. MFCCs provide information regarding energy distribution on the spectral envelope of signals [46].
Each coefficient corresponds to a specific frequency band, but in a perceptual scale (the Mel scale). Thus, MFCC1 can be
interpreted as the total energy obtained, MFCC2 as the weighted ratio of the energy of a low to a high frequency band, MFCC3
as the ratio of mid to low + high frequencies, MFCC4 as the ratio of two specific bands to two higher frequency bands, and so on
[49]. It is worth mentioning that the Mel scale provides higher resolution in the lower frequency bands, as it has an almost linear
relationship with the Hertz scale below 1 KHz [50].

Feature set 3 is a combination of sets 1 and 2, with 40 features. The description of the features used in each set is shown in
electronic supplementary material, table S1. In addition to the three main feature sets, we tested other combinations of features
by domain (cepstral, spectral and temporal) to investigate their contributions. These sets were (i) MFCCS only (n = 26), (ii)
spectral features only (n = 8), (iii) temporal features only (n = 5), (iv) TTFs only (n = 30) (electronic supplementary material, table
S2).

(d) Data augmentation
Data augmentation is a technique commonly used to train machine learning algorithms on small and/or unbalanced datasets
[51]. Considering this, we selected only a few samples of fish calls to test the contribution of data augmentation applied to
tabular data to the performance of the classifiers. Therefore, a small dataset of fish sounds was used to assess the effectiveness of
data augmentation on tabular data. This is important because in many situations larger datasets of fish sounds are not available.
The original datasets contained 120 samples (30 samples for each class). We augmented each dataset by using the standard

Figure 1. Spectrograms of the four classes of reef fish sounds. The four classes are low-frequency sounds, consisting of sequences of pulses. (a) Class 1, (b) Class 2,
(c) Class 3, (d) Class 4.
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deviations limits (summing and subtracting of each sample). After augmentation, the datasets had 360 samples (90 samples for
each class). (For more details of the data augmentation process, see electronic supplementary material, ‘Methods’.)

(e) Classification model
After the feature extraction process, fish sounds were classified using three supervised algorithms (NB, RF and DT) and a
supervised neural network (MLP). With the aim of removing less important features (dimensionality reduction), we generated
a random variable with a uniform distribution and added it to the feature vector to train an RF estimator to assess feature
importance prior to the classification process. However, no feature was ranked below the random variable, and we assumed
that all features were important. Tabular data of each feature set were used as input for these four algorithms. The classifiers
were implemented using the Scikit-Learn Python package [52]. To train the supervised algorithms, the dataset was randomly
split into 70% for training and 30% for testing. The supervised algorithms were run under Scikit-learn default parameters
for all classifiers. The number of estimators for RF was set to 100. The MLP architecture developed for this work consisted
of four hidden layers. The selected activation function was the Rectified Linear Unit (ReLU). The selected solver for weight
optimization during the training step was the Adaptive Moment Estimation (Adam) algorithm. The regularization parameter
(alpha), which helps to prevent overfitting, was set to 0.1. Training was performed over 200 epochs with a batch size of 8. For
MLP, the dataset was also divided into 70% for training and 30% for testing.

Four metrics were used to evaluate the performance of the classification algorithms: accuracy, precision, recall and f1-score
[20,53]. Accuracy is the ratio of the number of correct predictions to the total number of predictions, and it measures the
overall correctness of a classification model; precision is calculated as the ratio of true positives to the total number of positive
predictions made by the classifier, and it measures the correctness of positive predictions; recall is the ratio of the number of
true positive predictions to the number of positive observations in the data; f1-score is the weighted average of precision and
recall [54,55]. We also used a k-fold cross-validation method (k = 5) to evaluate the robustness of the classification model and the
data augmentation effects. These results are presented in electronic supplementary material, table S3.

(f) Model explanation
To provide a comprehensive explanation of the proposed classifiers, we used SHAP. We used the shapExplainer algorithm from
the SHAP Python package [56] in our RF classifier for the augmented datasets to compute the feature importance for each class
and the impact on the model outputs. Figure 2 represents the workflow for the whole sound classification process, including the
preprocessing, feature extraction and data augmentation steps [11,56,57] (For more details of the data augmentation process see
electronic supplementary material, ‘Methods’.)

Figure 2. Workflow for the feature selection and classification processes for reef fish sounds.
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3. Results
We have evaluated the performance of the models to determine their effectiveness in handling different feature representations,
as well as the effects of data augmentation. Four metrics were used to evaluate the classification models (accuracy, precision,
recall and f1-score), as shown in table 1. We observed that all classifiers had a satisfactory performance for all feature sets.
In general, we observed the best results for RF and MLP, followed by NB for all feature sets. DT showed a less satisfactory
performance; however, it performanced well for feature set 1, with an accuracy of 91.7%and precision, recall and f1-scores of
92.0%.

The data augmentation had a significant positive impact on the classifiers, as it increased the performance metrics. For
instance, while the accuracy of the original feature set 3 was 94.4%, 98.1% of the calls were correctly classified by MLP after
augmentation. The NB, MLP and RF classifiers were the most sensitive to data augmentation, while DT had less influence on
its effects. Classification accuracy increased from 80.0% to 93.3% and from 88.9% to 93.5% for NB and RF from feature set 1,
respectively. The cross-validation used to test our classifiers shows that the proposed architectures are satisfactory, with, for
example, 95% ± 0.6% of correct classification by MLP (electronic supplementary material, table S3).

Regarding the feature sets, the third one was the most influential for all classifiers, reaching 98.1%accuracy for MLP, after
augmentation. This set was the largest, with 40 features, and was the optimal feature set. Feature set 1 was the second most
influential, with 95.4% of accuracy for the same classifier, after augmentation. The lowest performance for all classifiers was
for feature set 2 compared with the other sets, but the correct classifications were superior to 75% for RF and MLP. It is worth
mentioning that this set had a significant increase after augmentation, reaching 85.2%, 88.9%, 78.7% and 90.7% accuracy for
NB, RF, DT and MLP, respectively. For the other features tested (electronic supplementary material, table S2), we observed that
the TTFs set showed the best performance. The feature set with the second best performance was the MFCCs, followed by the
spectral set. Temporal features presented the lowest performance metrics for the classifiers, but they increased significantly after
augmentation.

We computed the SHAP values and the influence of each feature in predicting each class using the RF classifier for each
set. The performance metrics (accuracy, precision, recall and f1-score) were also computed for each class for each feature set
(electronic supplementary material, table S4). Accuracy was above 92% for all classes in sets 1 and 3, and above 86% for set 2,
with Class 1 showing the highest accuracy in each set. For feature set 3—the optimal set—the most important features were
interpulse interval (IPI), high-frequency, MFCC5, call duration and pulse duration (figure 3). In this feature set, we can see that
high frequency and MFCC5 were the most important features for Class 3. IPI and call duration had a large contribution for
Class 2. IPI and high frequency also contributed in predicting Classes 1 and 4.

Figure 4 shows the polar plots for the SHAP values for each class for feature set 3, highlighting the features with the most
significant contributions to the classification. For Class 1, IPI, MFCC7 and MFCC10 emerged as the key drivers, indicating
the strong influence of these features in predicting this class. For Class 2, IPI, call duration and pulse duration were the most
important features in distinguishing this class. High frequency, MFCC5 and MFCC8 were most influential in predicting Class
3, whereas IPI, high frequency, MFCC7 and pulse duration were most influential in predicting Class 4. These results highlight
the different roles that specific features play in the predictions made by the model. Electronic supplementary material, figure
S1 provides a different type of visualization for the summary of SHAP values for feature set 3, showing how the low or high
values of the features impacted the outputs of the model. SHAP summary plots for each class for features set 1 and 2 are in the
electronic supplementary material, figures S2 and S3, respectively.

For TTFs, we used a dataset with MFCCs, spectral centroid, spectral rolloff, zero-crossing rate (ZCR) and spectral flux. The
accuracy for this set was 85.2%, 88.9%, 77.8% and 91.7% after augmentation for NB, RF, DT and MLP, respectively (electronic
supplementary material, table S2). This feature set showed the best performance among the other features tested. The main
contributors to this performance were the MFCCs 8, 7, 5, as well as spectral centroid, ZCR and spectral rolloff. Spectral
centroid influenced the prediction of Class 2, and ZCR and spectral rolloff contributed to the prediction of Class 1 (electronic
supplementary material, figure S4). Spectral flux was not relevant for this set. However, for the set combining all of the spectral
features, spectral flux was more important than centre and peak frequency (electronic supplementary material, figure S5).

4. Discussion and conclusions
The results presented in this work show the effectiveness of the model in classifying unknown reef fish sounds across the
feature spaces considered. The proposed classifiers were able to discriminate classes with similar temporal patterns (actually
the same call type: pulse trains). Previous work has trained supervised algorithms to detect, identify or classify fish sounds
using different algorithms (such as k-nearest neighbours, random forest and support vector machine), architectures and feature
sets [19,20,58,59]. Their best performances were, respectively, 96.0%, 95.6%, 96.9% and 82.7%. Compared with the performance
reported in these works, our results are promising, as the proposed models achieved similar performance. It is worth noting
that we proposed a simpler approach with very small datasets and achieved excellent results, especially after augmentation.

MLP was the best classifier for these sounds, reaching an accuracy of 98.1% after augmentation for the optimal feature
set. This classifier also showed high precision, recall and f1-score, which means a low number of false positives and false
negatives [60]. This is a robust algorithm, capable of estimating nonlinear functions and with the ability to learn hierarchical
representations of data [61,62]. RF was also a robust classifier, showing high accuracy for feature sets 1 and 3, especially after
augmentation. This is an ensemble classifier with high accuracy and statistically robust results and it is currently one of the
most powerful supervised algorithms [63,64]. MLP and RF classifiers showed similar performance for the original datasets. The
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high performance of RF can be explained by the ability of tree-based classifiers to handle tabular data. In fact, these models
are known to outperform deep learning for this type of data [65]. However, after augmentation, MLP outperformed RF, as this
technique optimizes the performance and robustness of deep learning models [66]. On the other hand, DT was not a good
classifier for this type of fish sound, as it had a lower performance for the optimal feature set and was the least sensitive to
data augmentation. This classifier has some limitations such as instability, where changes in any variable or in the size of the
training data can affect the classification rules [67,68]. Although NB showed higher performance, this algorithm may not be
appropriate for this problem given the complexity of the fish sounds. Although it learns fast, it is a simpler algorithm, based

Figure 3. Summary of the contributions of features for each sound class for feature set 3.

Table 1. Performance of supervised classification for the main original and augmented feature sets. The performance metrics are Ac (% accuracy), Pc (% precision), Rc
(% recall) and f1 (% f1-score). Values in bold indicate the best performances.

classifier feature set original augmented

Ac Pc Rc f1 Ac Pc Rc f1

NB 1 80.6 89.1 82.3 82.2 93.5 93.5 93.4 93.2

2 80.6 77.8 77.4 76.7 85.2 85.1 84.4 84.5

3 91.7 91.7 92.0 90.5 95.4 95.1 95.0 95.1

RF 1 88.9 90.1 89.9 90.0 93.5 93.1 93.0 93.0

2 77.8 73.9 74.6 74.0 88.9 88.8 88.3 88.3

3 83.3 86.4 86.6 84.1 92.6 92.4 91.9 92.1

DT 1 91.7 92.0 92.0 92.0 92.6 92.0 92.6 92.2

2 63.3 63.5 63.0 62.2 78.7 77.7 77.7 77.6

3 72.2 70.6 73.7 70.6 88.9 88.7 88.2 88.3

MLP 1 88.9 91.5 88.0 89.0 95.4 95.4 95.6 95.5

2 75.0 78.6 75.2 74.3 90.7 90.8 90.5 90.4

3 94.4 94.2 93.3 93.6 98.1 98.1 98.2 98.1
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on probability, which considers all variables as independent [69]. Thus, the results show the importance of testing different
classifiers, according to the specificities of the datasets.

Our results also demonstrated that data augmentation had an expressive influence on the classifiers, improving their
performance. Data augmentation has been widely used in AI, especially in deep learning, which requires large datasets for
training. This method is more commonly applied directly on images or raw audio files to significantly increase the size of
datasets [51,70]. Ibrahim et al. [71] have used data augmentation directly on images of spectrograms to increase their dataset
of grouper species. Waddell et al. [72] also augmented their dataset of images of six different fish calls to optimize their
classifier. Due to the complex structure of tabular data, data augmentation for this type of dataset is not well established
and must be domain-specific [66,73]. However, our approach using a comparatively small increase in the number of samples
of tabular data (33%) could significantly improve the model performance. It is worth noting that in this work we used a
balanced dataset (30 samples per class) to ensure that the classifiers were not biased towards a particular class. In addition, we
performed cross-validation on both the original and augmented datasets, so the models could handle unseen data. The increase
in performance demonstrated that this type of augmentation can be used in situations where large datasets of images or sound
files are not available.

Feature set 3, with 40 features, was the optimal feature set with the best results (94.4% accuracy for the original and 98.1%
for the augmented dataset with the MLP classifier). This is consistent with the results of [20], where the best results (96.9% and
96.5% for the random forest and support vector machine classifiers, respectively) were for their set with the highest number of
features (84 features). In terms of the effect of data augmentation, feature set 2 was the most sensitive as it had the lowest values
for the performance metrics, but after augmentation, the performance of the models for this set increased significantly. This can
be explained by the small size of this set to train comparatively more complex features, thus requiring more data samples to
train the classifiers. Regarding the other feature sets tested (electronic supplementary material, table S2), the temporal feature
set showed the lowest performance. Despite being the same call type (pulse trains), it is worth mentioning that classes 1, 3
and 4 varied in the number of pulses within the classes, and not only between classes, which increased the complexity of the
classification. However, performance increased after augmentation, as the models were able to learn with more examples.

The results of the feature contributions for each class for feature set 3 using the SHAP Explainer showed that Class 3
was most influenced by high frequency, as it had the lowest frequency of the classes tested (figure 3). For this class, high
frequency acted as a 'threshold' as it had the lowest frequency of all classes. As high frequency and MFCC5 influenced the
prediction for Class 3, we generated a dependence plot for this class (electronic supplementary material, figure S6) to investigate
possible interaction effects of these two variables. The plot shows the influence of high frequency on the vertical distribution
of SHAP values for MFCC5. Higher values of high frequency have a small relationship with MFCC5, indicating that this class,
characterized by a low frequency band, is related to this coefficient. In general, MFCCs were important in predicting Class 3,
which may be related to the distinct characteristics of the spectral envelope in the frequency band of this class. IPI and call
duration influenced the predictions of Class 2. In fact, this class was the only one without within-class variation, with a very
clear temporal pattern (always four pulses), making IPI and call duration good descriptors for this class. The dependence plot

Figure 4. Polar plot for the summary of the SHAP values for each class for feature set 3. The amplitude of the polygons indicates the importance of features.
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for this class for IPI and call duration (electronic supplementary material, figure S7) shows that higher values of call duration
are associated with higher values of IPI.

For feature set 1, high frequency, IPI and call duration were the most important features. High frequency had more influence
in predicting Classes 3 and 4, while IPI and call duration had more influence in predicting Class 2 (electronic supplementary
material, figure S8). In feature set 2, we can observe that the most important features were the MFCCs 7, 5 and 8. Although
the temporal feature set had a lower performance, IPI, pulse duration and call duration showed significant contribution in
predicting Class 1. For feature set 3, the summary plot for Class 1 (electronic supplementary material, figure S1a) shows that
higher values of these features were one of the most important features in predicting this class. In general, the MFCCs had more
influence in predicting Class 3 (electronic supplementary material, figure S1c), followed by Classes 4 and 1, and less influence
on the prediction of Class 2 (electronic supplementary material, figure S9). Regarding the spectral feature set, it is possible to
observe that high frequency and TTFs (spectral rolloff, spectral centroid and zero crossing rate) were the most important in
predicting classes (electronic supplementary material, figure S5). The most important MFCCs by class were MFCC5, MFCC8
and MFCC4 for Class 3 (100−400 Hz); MFCC8 for Class 2 (100–600 Hz); MFCC13 for Class 1 (100–500 Hz); and MFCC7 for
Classes 1 and 4 (100–500 and 100−700 Hz, respectively). Higher-order MFCCs (i.e. >14) were not significant in discriminating
between classes.

Owing to the effectiveness of MFCCs in lower frequencies, these features are suitable for most fish sounds. This explains the
recent popularity of MFCCs in the field of fish sounds. Previous studies have included MFCCs in their feature sets to detect,
classify and identify fish sounds [19–21,58,59,74–76], achieving satisfactory results for their models. However, they have not
provided a detailed discussion on the contribution of each coefficient for specific sound classes. The individual analysis of each
coefficient may offer a more refined spectral representation of the signals. TTFs have also been explored in previous work for
fish sound detection and classification [21,74,76]. For example, Ruiz-Blais et al. [76] used statistics of different timbral features
to detect sciaenid species, achieving 89% correctness for their set with all features tested, after post-processing. In their work,
they found that cepstral coefficients, spectral centroid and zero-crossing rate were the most relevant. Our results are consistent
with theirs because the same features were most relevant, but we achieved 91.7% of accuracy for the augmented set for the MLP
classifier. These results demonstrated that TTFs were also good descriptors for these sound types (see electronic supplementary
material, table S2 and figure S4).

Fish are known to use sound for many purposes, including mating, territorial defence, feeding, schooling behaviour and
many others [2,39]. However, a current limitation of fish sound classification is the lack of data to compare and match unknown
sounds to specific species. Although over 1000 species from 175 families (including Haemulidae, Holocentridae, Batrachoididae,
Serranidae, Sciaenidae, Pomacanthidae, Pomacentridae, among many others) are known to produce sounds [6,36,77], the
repertoire of most soniferous species has not been totally characterized [78]. This gap in the acoustic ecology of fish is still a
challenge for an ecological application of PAM in terms of identification and characterization of fish biodiversity patterns and
to understand aspects of species behaviour. Although it was not possible to identify the species producing the sounds used in
this paper, our results demonstrate the effectiveness of artificial intelligence in classifying pulsed fish sounds. Classes 2 and 3
show similarities to sounds described for the Pomacentridae family, especially those produced by the genus Stegastes [79,80].
In summary, for those classes of sounds possibly produced by Stegastes, the best features that described these sounds were IPI,
call duration and pulse duration (Class 2) and high frequency, MFCC5 and MFCC8 (Class 3). Given that some species in this
genus are known for their territorial behaviour and the crucial role that sound plays in agonistic interactions related to territory
and nest defence in coral reefs [80], advances in the detection of these sounds are crucial. Improved sound classification can
provide valuable insights into the dynamics of this keystone group and enhance our understanding of their ecological roles and
interactions within their habitats.

Explainable AI allowed us to identify which features contributed to each sound class. Introducing the interpretability of the
models in the complex problem of fish sound classification is an important step, as it provides insights into which features
shape a particular sound type. In addition, it is important to understand the mechanisms that lead the model to achieve certain
performance metrics in order to assess its reliability [81]. XAI also enabled us to evaluate the impact of each MFCC in predicting
each class. MFCCs are widely used in speech recognition to study emotions—and even diseases (such as depression)—with
distinct coefficients used as indicators of specific disorders [49,82]. For fish, these may be important descriptors for recognizing
species-specific sounds or indicators of behaviours. Recognizing and characterizing these sounds are key to better understand-
ing diel behaviours and functional roles linked to critical reef ecological processes [83]. This is a significant advance because
most of the studies using AI to detect and classify fish sounds have focused only on target species and the majority of these
sounds remain unidentified and uncharacterized in current research [78,84]. There is therefore a growing need to develop
reliable detectors and classifiers that are capable of interpreting unknown fish sounds. By focusing on the development of such
advanced detectors and classifiers, we can improve our ability to categorize and understand a wider range of fish acoustic
signals. The ultimate knowledge of the spatial and temporal patterns of biophony and associated underwater soundscape are
the next generation of data for the optimal management and conservation of marine ecosystems and associated biodiversity
[85].
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